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ON THE ASYMPTOTIC PROPERTIES OF A PRIORI MINI~X ESTIMATES* 

V.G. POKOTILO 

Properties are studied of the a priori minimax estimates /1,2/ of an unknown in- 
itial state of a linear dynamic object under the condition that the measurements 
are taken at discrete instants, while noise exists only in the measurement channel 
and is modelled as an independent random variable. The paper continues the investi- 
gations begun in /3/. 

1. Preliminary remarks. Assume that the process 

yk = Bx (tk) + wk (1.1) 

where x(t) is a linear system's phase vector, 
kr, k = 0,1,2,. . . (z > 0) 

is observed at discrete instants of time f= 

i=As, t>o, x(O)=a~P (1.2) 

Here A and Bare constant (n X TL)- and (7M X n)-matrices, Q, k= 0.1,. .., are independent 
random variables prescribed on the space of elementary events {Q, X, P} in {Rm, A}, A is a 
Bore1 a-algebra of sets in R"'. The initial state z is unknown. Let h 
values of matrix A of multiplicities kl,...,kr, respectively, and 

I,...r?,r be the eigen- 
h,f, j = 1, 2,. . ., kt, be 

vectors of a series relative to the matrix A with eigenvalues ht, so that /4/ 

&z=%ht~t -%= I&¶ -I-&,, * ..t 

&ki = h&k, -t hki-t, i=-l,2,...,r 

We accept that 
Reh, Q F&h,< . . ,<R~e~<0=Re~+~=...=Re&,+,< 

ReLp+1<;...<Re5 
and we denote the sets 

~={$E~:11~ll=f, +h/lllt,=O, j=l,2,...,kf. 
i = 1,2, . . . . II}, Y’ = {$ E Y : II, = aB f aq’, 
a E ,Rm, a E R’, $7~~~ = 0, i = u + 1, u + 2, . . ., u + p} 

(1.3) 

bY Y,Y- By lower-case Greek letters we denote row-vectors of appropriate dimensions, in 
contrast to column-vectors which we denote by lower-case Latin letters. 

An estimate z&N) of the scalar quantity *z. $~p, isl-$, from Nobservationsofform 
(1.1) can be realized as a linear functional 

.r(*N)=Wl=~&J~Y~, y" = (YO, * . . t YN) (1.4) 

As was shown in /l/, the operation ml*] is best in the minimax sense under the assumption 
that the possible domain of noise measurements is estimated by the inequality PI#]<%,where 
&=(200,... mix) and pf-] is the norm in the (m&dimensional space {wx}, and is determined 
as the solution of the following problem (the moment problem): 

p*[cpl-j inf; 2 cptB~(W=$ 
(1.5) 

Here Co(t) is the fundamental matrix of (1.2) and p*[*] is the adjoint norm, i.e., the norm 
introduced in the usual manner in the space of linear functionals over {Wnr, p[.]}. The fol- 
lowing norms (1. \I is the Euclidean norm in Rmb 
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are often used as p[.] . By z,($, N) we denote the minimax estimate corresponding 
following norm p* 1.1, q = 1, 2, 00. Further on we study the asymptotic properties of 
as N+m. 

to the 
$Q (II, W 

2. Fundamental statements. Theorem 1. Let the pair (-4, B) be observable, M[wB] c 
0, xiiw#**fsfPd"l (1 is the unit matrix, the asterisk denote transposition), 'fnen a Z>Q 
exists such that for all ~~~,~~~~,N~~ p =i 
M fzp &, .%')I = qz, 

1,2, is an unbiased and consistent estimate, i.e., 
and for any s>Owe have P(j.zP(~,N)-~z~f~E)-+O as N+co. 

GeneraSly speaking, the analogous statement for g - 00 is invalid. However, jf 6, is 
the value of the lower baund in (1.5), then the next theorem holds when p [.I = p- [.I. 

Theorem 2. Let system (A, 3) be observable, 
k = 0, 1, . . ** 

M[wt]am 0 and M[wxe'l be bounded for 
Then a z>O exists and for all @E Y’,s>t), we can find a functional cpe 

such that pm* ipal (6, i-a and estimate il.41 is unbiased and strongly consistent, i.e., with 
probability one 

z, (11, N) = 'peWI+@ as N-cm 

The minimax estimates are guaranteed and are constructed during calculationsontheworst 
realizations of the noise, not using their statistical characteristics. From Theorems I and 
2 it follow that if the noise is random, they nevertheless possess satisfactory properties 
(unbiasedness, consistency). He note that the set y covers the most interesting directions, 
since if 2 =c#t* +c+*,+~SF and I&#,* = 0 for $G v, I then @ (t)Z =c@(tfipI* -i- 8 f& 
iI6ft)lI~CexD(Reh,t)~Oas t+m, C =eonst. From the observability condition it foklowsthat 
for all i L-SI 1, 2, . . . . P there exists a raw p of matrix B such that $nrl#= 0. 

3. Proofs of the fundamental statements, Here, for brevity, Theorems 1 and 2 are 
not proved in detial. Below, only a proof plan is presented in the form of a sequence of 
statements. For simplicity we assume that m = 1, i.e., matrix B consists of one xow p. 
The passage to the general case can be effected by a decomposition of the space intoadirect 
sum of observability subspaces cmected with the rows of matrix B. 

lo. Let the pair {A, @) be observable. Consider the system of equations 

I W ((i - k) r) & = h; i = 1, 2, , , ., n, gk E R” (3.1) 

where 6~ is the Kronecker symbol, k is fixed. There exists re> 0 such that system (3.1) 
is solvable when r = &t*, S=; 1, 2, . . . *and its solution admits of the representation 

Representation (3.2) can be obtained directly by inversion of the matrix of system (3.11, re- 
duced to the new variables 

We make. use of the indicated values of 70 and &,S= 1, 2, , . . l 

jr,, k ?= i, 2 
There exist M>O and a partitioning {.I*} of set (0.1, . , ., N} into collections 
t . . ., K (N) , of n indices each, such that Jt, fl Jr = q, k+i I and the system of 

equations 

has the solution 
cpl: 1 q1 I< M, i E Jr, k = 1, 2, . . .t K (N), N = 1, 2, . , . 

Here the partitioning (Jk) can be chosen such that N[K (N)<iraas N-*-m. T5 prove this as- 
sertion we consider the colfections 

~~“=(i=k+~--i)lx, f=l,Z ,... sr), k=@,f ,..., jY 
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and seek the solution of (3.3) as 

Cpi = W (- iT*) gC (3.4) 

This leads to the equation system (3.1) in gr with Z= IK%. 
lows fromrelations (3.2), 

An upper bound for IcpiI thusNfol- 
and to complete the proof it remains to note that A(N)>[-] 

for the collections Jk of the form being examined. 
l+nL 

3O. Proof of Theorem 1. Let 
N 

Since pr*[. ] = p,[-1, the inequality 

1 cp, j < M (K (IV))-‘, i = 0, 1, . . ., N 

M [(q ($, N) -$2 I”1 < M*&‘I’ (K VW2 

follows from 2O. The estimate z,($,N)can be written out in explicit form /l/. Under the 
theorem's hypotheses it coincides with the estimate from the least squares method in the gen- 
eral nondegenerate linear Gauss-Markov model /5- 7/ 

M[Iza(% N) -~zlal=~~(~~~*(~7*)~*~~(~~*))-1~*~ Man(K(N))-’ 

The last inequality follows from statement 2O, since the relations 

are valid for the solutions of (3.3). Thus, the assertion of Theorem 1 follows from the 
Chebyshev inequality. The unbiasedness of the estimates is a simple corollary of the unbiase- 
dness of the minimax estimates /l/, expressed by the second of relations (1.5). 

4O. Let 

n+P>& 1c1=B(IIBII)-', P[*l=PceI*l 

Then the relations 

cp: = (II B II)-'* 'pi0 = 0, i = 1, 2, . . ., N 

determine the solution of (1.5). Indeed 

N 

2 wV@ W = $ 

Assume that (pi, i = 0, 1, . . . . N, is a solution of (1.5). Then (see /l/J 

(3.5) 

where yinI i = 0, 1, . . ., Nis an ideal noisefree signal. Allowing for (1.1) and (1.2), we obtain 

5O. Let 

1c = aI (II B II)-’ B + a*$’ E y’, p 1. I = pc3 1.1 

and 'pt (T, N), i = 0, 1, . . . . N be the solution of (1.5) under the additional assumption 'PO = 
'PI = . . . = (PT = 0. Then 

Indeed, frcw the proposition in 2O it follows that system (3.3) is solvable for each of the 
collections 

Jk. = (: = k + 0 - i) I,, i = 1, 2, . . ., n), k, s = i, 2, . . . 
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Choosing k&T and allowing for (3.2) and (3.41, for N>k+nl, we obtain 

In.lillll~-~h~l~~i~~~IICI.~I~~~~~~~~~~--il~*~~c~~~z~~*~~ 

Using (1.3) and (3.2), we can prove that as 8-m the first of the sums in the last expres- 
sion tends to the quantity (Upj)-', while the second tends to zero. Consequently, statement So 
is valid. 

6'. Proof of Theorem 2. Relying on the preceding statement, we choose the sequence Nr, 
k=l, 2, .., from the condition 

It is well known that when p[*] = p-[*] the solution of (1.5) is reached on a finite collec- 
tion of indices. In the case at hand we can take no more than nindices /1,2/. By qki, i = 
1, 2, . . ., n , we denote nonzero r&(lV8, N&+i) and we define 

K n 

By virtue of statements 4" and 5” 

Theorem 2 follows fromtheunbiasednessof the minimax estimate and the strong law of large 
numbers /El/. 

4. Examples. We assume that wk.k= O,l,..., are independent like-distributed randomvari- 
ables with zero mean and bounded variance. 

lo. Let n=i,A=O,B=i. The estimates considered in the paper are determined by the 
equality 

N N 

r,WN)= (&) “k=‘+& wk 
I% 
kd 

(the solution is not unique when Q= 00 ). 
2O. We consider the small oscillations of a mathematical pendulum. In this case 

p= Ili,oll. p(kr)=Icoskr,sinhl 

3O. For a uniform motion along a straight line 

we obtain the following expression for the least squares estimate: 
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The minimax estimates Of the initial position (~P=*,E Ili,oB and velocity ($=qI=/O,l II) when 
q== are determined bY the relations 

and are not consistent. Let s>O. We dQfine sequences of positive integers ny andk~,i==i,Z, 1 _ 
m. k== 1.2. . . . I such that (% -ml)-1 <s,24 (4 -k#<s. Then for N>~x{~;ki,1~1,2,n,~I,a ,..., 
M,k=l,2 v.0 .bKJ the equalities 

yield strongly consistent, under the conditions being examined, estimatQs of the object's in- 
itial position and velocity, as 

1, 
2. 

3. 

4. 
5. 

6. 

7. 

0. 

The author thanks B.N. Pshenichnyi for attention to the work. 
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